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Motion in a Periodic Potential 
Driven by Rectangular Pulses 

George H. Weiss  1 and Moshe  Gitterman 1' 2 

Exact solutions are found for the averaged velocity of an overdamped pendulum 
driven by a series of square pulses. The formalism developed can be applied to 
either periodic or random switching as well as cases intermediate between the 
two. The phenomenon known as phase locking can be shown to exist when 
periodic switching is used. 
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1. INTRODUCTION 

The equa t ion  tha t  describes the dynamics  of an o v e r d a m p e d  dr iven 
pendulum,  

~b -- a -  sin ~o - g(~o) (1) 

occurs  in a n u m b e r  of different appl ica t ions .  These are exemplif ied by the 
resist ively shunted  Josephson  junct ion ,  (1) the theory  of charge densi ty  
waves, (2) phase  locking  in electric circuits,(3) and  mode  locking in r ing laser 
gyroscopes /4)  M o r e  recent  app l ica t ions  have included the theory  of the 
m o t i o n  of  f luxons in superconduc tors ,  (5) the m o t i o n  of defects in convect ive 
fluids, (6) and  the pene t r a t ion  of b io logica l  channels  by ions. 3 It  is easy 

to de te rmine  proper t ies  of the so lu t ion  to Eq. (1) since the equa t ion  is 
solvable  in closed form. The  mos t  significant of  these is the basis of the 
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remarkable voltage-current characteristics of the Josephson junction. If we 
define a (dimensionless) frequency co by co = (a 2 -  1)1/2, we readily find that 

( ~ b ) - l i m  l f o  {0co for a < l  v+ oo -T ~b('r) dr = (2) for a > l  

The content of this equation is best understood in terms of the behavior of 
a pendulum. When the parameter a is small the pendulum can only per- 
form small oscillations around its equilibrium point, while if a is sufficiently 
large the pendulum is able to execute complete rotations. 

Equation (1) describes the dynamical behavior of an autonomous 
system. Quite often ~p is also subject to external forces. These may be of 
two generic varieties, deterministic and stochastic, i.e., random noise, with 
the result that the equation for ~0(z) can be expressed as 

~b = g(q~) + fact(t) + f~to~h(t) (3) 

The deterministic forces whose effects have been analyzed in the context of 
dynamical systems are generally taken to be periodic, with applications to 
an external ac current driving the system, while the stochastic component 
can generally be identified with thermal noise. 

While one can find a solution in closed form to Eq. (1), this is not true 
of Eq. (3) except in special cases. For example, when fstoch(t) is Gaussian 
white noise and fdet(t) = 0 the effect of the noise on the stationary voltage- 
current characteristics has been determined. (1) In a recent calculation we 
have determined the solution to Eq. (3) when fstoch(t)=0 and fdet(t) 
is a periodic telegraph signal which may or may not be symmetric. (8) 
A number of authors have analyzed the case in which foot(t)=A sin(cot) 
and fstoch(t)=0 either using perturbation theory (9) or by a numerical 
solution of the fundamental equation. (1~ A most remarkable result of either 
calculation is the lock-in phenomenon which manifests itself as horizontal 
"Shapiro steps" that appear in the voltage-current characteristics of 
Josephson junctions. This phenomenon, which appears in the model 
specified by fdet(t)= A sin(cot) when (~b)=  nco, n = 1, 2, 3 ..... is due to the 
stability of periodic orbits in phase space with respect to small changes in 
the parameter a that appears in the function g(q~) in Eq. (3). 

In the present paper we will discuss a number of exact solutions to Eq. 
(3). These are of two sorts, the first being those in which fstoch(t)= 0 and 
fdet(t) is one of a variety of different types of telegraph signal. Here we are 
able to bypass the limitation to small amplitudes of the driving function, 
which is a frequently used basis for a perturbation analysis of the solution 
to Eq. (3). This analysis will be described in the following section. In Sec- 
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tion 3 we derive the fundamental equations for dichotomous noise, which 
are then applied in Section 4 to the case in which fact( t )= 0 while fs toch( / )  

is a two-state semi-Markov process with constant amplitudes. In both of 
these cases the fact that regeneration points (m can be identified greatly 
simplifies the analysis while not affecting the basic physical properties of 
the system. The final section contains a discussion of results. 

2. T H E  D E T E R M I N I S T I C  T E L E G R A P H  S I G N A L  D R I V E N  CASE 

In this section we summarize the analysis of the case in which faet(t) 
is given by a telegraph signal which, in the most general case, is defined by 

fa.t(t)={AB for n(T~+T2)<t<~(n+l)T~+nT2 
- for (n+l)T~+nTz<t<<.(n+l)(T~+T2) (4) 

where n = 0, 1, 2,.... By defining the deterministic signal in this way we are 
able to handle both the case of the symmetric signal (T1 = T2 = T; A = B) 
and the case of a train of delta-function pulses (B = 0, A ~ o% T 1 --~ 0 with 
A T 1 = 1). The principal idea, just as in the analysis of the Kronig-Penney 
model, is to match the properties of the solution at the time points 
n(T~ + 7'2) and at the remaining points at which this time is incremented 
by T 2 and by T1 + T 2. For  simplicity we restrict ourselves to the case in 
which A = B and in which T 1 = T 2 = 7"/2. Two frequencies naturally appear 
in the analysis of the problem. These are 

o) 1 = [ ( a + A )  2 -  1] 1/2, co2= [ ( a - A )  2 -  1] ~/2 (5) 

We will assume that the parameters a and A have been chosen so that both 
frequencies in this last equation are real. It is also convenient, in expressing 
results of the mathematical analysis, to define a pair of parameters 0i, i = 1, 
2, and to change the variable of interest from q~(t) to u(t) by introducing 
the transformations 

u(t) = tan (~2(~t)) , 0 i=  tan ( - ~  --T ) (6) 

We can solve Eq. (3) with faet(t) given in Eq. (4) and fstooh(t)=0 exactly 
in any interval of periodicity [2nT, (2n + 1)T]  or [(2n + 1)T, 2(n + 1)T]  
since our use of the telegraph signal is equivalent to redefining the 
parameter a as a+A in Eq. (1). Define the variables Un=u(2nT ) and 
V,--u((2n + 1)T). Our eventual goal is to calculate a recurrence relation 
for the Un, which is possible because of the simple form of the periodic 
term. 

822/70/1-2-7 
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The general form of the solution to Eqs. (3) and (4) in the interval 
[2nT, (2n + 1 ) T] can be written in implicit form as 

t = 2  {tan-l [(a+ A)u(t)- (7) 

where C is a constant of integration. This may be found by setting t = 2nT, 
which allows us to calculate the value of C as 

C=n~ol T_tan-l I(a + A)U'-  I ] 
(/)1 (8) 

Our knowledge of the form of C now allows us to propagate the solution 
to the next end of the interval, which provides a relation between V. and 
U. of the form 

0)101 -- 1 + (a+A)Un ( a + A ) V . - I = ~  1 (9) 
03 1 -~ 0 1 - -  (a+ A ) O  1 U  n 

In a similar fashion we can find a relation between Un + 1 and V.. When V. 
is eliminated between this set of relations one finds a relation between 
successive values of U. which can be expressed in the form of a linear 
fractional transformation as 

P+ QUn 
Un+ 1 (10) R-SU.  

where P, Q, R, and S are constants. These are written in terms of the 
parameters 

01 0 2 (a  + A)O 1 (a-A)O 2 
= - - ,  , - , ( 1 1 )  

r/1 601 r/2 --0,)2 ~1 (-01 /32 ('02 

as 

P =/32(1 + 111) + /31(1 -- r/2), 

R = (1 + r/l)(1 + r/2) -/3~/32, 

Q =  ( l - q 1 ) ( 1 -  r /2)-  /31f12 

s =/32(1 - r/l) +/~1(1 + r/2) 
(12) 

Equation (10) can be solved analytically by rescaling it to 

AX.+B X.+ I 
X . + I  
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and then defining a new variable y by 

"~n Yn + l 

Y~ 
1 ~ y satisfies Y n + 2 - -  (1 + A) y~+l + (A -B)y~ = 0  

The presence of phase locking (or Shapiro steps in terminology 
descriptive of Josephson junctions) in the system corresponds to the 
existence of a fixed point in the transformation in Eq. (10). That is to say, 
the existence of phase locking is, in mathematical terms, equivalent to the 
existence of a fixed point U which is equal to limn ~ ~ Un. When such a 
limiting value exists it is readily calculable from the quadratic equation that 
follows from Eq. (10). Details of the calculation of the existence and 
magnitude of Shapiro steps are given in ref. 8. The point to be emphasized, 
however, is that an exact result has been obtained without the restrictions 
implied by a perturbation theory analysis. Similar results can be obtained 
for the case of a periodic train of delta functions as originally discussed by 
Azbel and Bak. (12) 

3. F U N D A M E N T A L  E Q U A T I O N S  FOR D I C H O T O M O U S  NOISE 

Let us next consider the second of the cases of interest, in which 
fdet(t) = 0 and fsto~h(t) takes the form of a random dichotomous signal. The 
same strategy can be applied to develop a formalism to calculate the 
response of the system using the basic idea of regeneration points as was 
used in Section 2, except that these points will now be allowed to occur at 
random times. We will discuss a case in which fstooh(t) is allowed to take 
on two values +A and - B  (A, B~> 0), with transitions between these two 
values occurring at random times 0 < t l  < t 2 <  t~ < ..-.  To define the 
system more precisely, we will assume that the random intervals To = tl, 
T, = tn - tn_ 1, n > 0, are identically distributed independent random 
variables characterized by a probability density function denoted by r 
The probability that a given time interval is ~>t will be denoted by 

= 

To the degree of generality which we have used in defining the system, 
the evolution of q~(t) can be modeled in terms of a semi-Markov process 
of a particularly simple kind, i.e., a two-state model in which the state at 
time t is defined by the value offstoch(t). Since (0(t) must now be regarded 
as a random variable, we can only seek its properties in terms of a 
probability density p(cp, t) for the event (p(t)= (p. Let q~ +(t) be the solution 
to 

~b+ =g(~p+) + A  (13) 
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and let r be the analogous function when +A is replaced by - B .  
We will also assume, to keep our results simple, that q~(0) is equally 
likely to start from either state, with probability 1/2, and that t = 0 marks 
the beginning of a sojourn in the appropriate state, so that O(t) is the 
probability density for t 1 as well as for the succeeding T's. 

The first step in calculating p(q0, t) will be to characterize the regenera- 
tion points. This will be done in terms of a pair of functions which we 
denote by t/+(cp, t) and t/_(~p, t). The function t/+(~0, t) is the joint density 
for a sojourn in the + state to end at time t, the value of cp(t) being (p at 
that time. This joint density is the solution to an integral equation which 
can be written as 

t/+ (r t) = �89 •((p - r + (t)) 

+ dqY rl_(qo',z) tp(t-z)6(qo-qo'-qo+(t-z))dz (14) 
- - c O  

with an analogous relation for ~/_ (q~, t), in which the subscripted signs are 
everywhere reversed. In this last equation the first term on the right-hand 
side accounts for the possibility that the stay in the + state was the first, 
and the second term accounts for all of the remaining possibilities. In order 
to find p(rp, t), we decompose this function into a sum of two terms, 
p(~0, t)=p+(~0, t ) + p  (qo, t), the first term accounting for the system being 
in the + state and O(t)= ~0 and the second to the remaining case. The 
function p + (~p, t) then satisfies 

p +(~0, t) = �89 ~'(t) ~(~o - ~0 + (t)) 

+ d~'  ~_ (~ ' , ~ )  ~ ( t - ~ ) ~ ( ~ - ~ ' - ~ 0 + ( t - z ) ) d z  (15) 
- - c O  

a similar equation being valid for p_ (r t). When there is additional noise 
in the system, so that, for example, Eq. (13) is replaced by a Langevin 
equation, the delta-function terms in Eqs. (14) and (15) will be replaced by 
some more complicated propagator. 

A formal solution to Eqs. (14) and (15) can always be derived in terms 
of a two-dimensional Laplace transform, but the only explicit solution for 
p((p, t) that we have managed to find corresponds to the Markovian case 
discussed in the monograph by Horsthemke and LefeverJ TM It is instructive 
to see how their equations can be found from our more general formalism. 
The Markovian case corresponds to choosing the waiting-time density to 
have the form r  e-~', from which one finds T(t)=~b(t)/~. Since 
Eqs. (14) and (15) are then identical up to a factor of 7, it follows that 

p+(~0, t )=  r/+(~o, t)/?, p_(q~, t )=  q_(rp, 0/7 (16) 
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so that in this case we need only solve Eq. (14) together with its conjugate 
rather than dealing separately with Eqs. (14) and (15). 

Let us express the solution of Eq. (13) for t in terms of ~o+ as 

t+((p I q~o) = (17) 
o g(z) + A 

where ~0o = (p(0). Observe now that the delta-function terms in Eqs. (14) 
and (15) can be replaced by 

6(~o-q~+(t)l=6(t-tt(~Pl~~176 6(t-t+(q~lq~~ (18) 
d~o/dt g(cp) + A 

After substituting this representation of the delta function for the first term 
on the right-hand side of Eq. (15), taking the Laplace transform/~+(q0, s) 
[ = ~6O{p + (~o, t)} ], and multiplying both sides of the equation by g(cp)+ A, 
we are able to express the equation for/~+((p, s) as 

[g(~o) + A]  ~ + (~o, s) = �89 

+ ?  e-('+s)'+(~l~')~O_(qo',s)dcp ' (19) 
O:9 

Notice that we have replaced the upper limit on the ~o' integral by % which 
is the maximum attainable value when the system is in the + state. Finally, 

dt+(qo I ~o') 1 
(20) 

do -g((p)+ A 

where it is important to observe that the right side of the equation is 
independent of (p'. We find that, on differentiating both sides of Eq. (19) 
with respect to ~o and eliminating the integral term through the use of the 
same equation,/~(c#, s) satisfies the partial differential e.quation 

8 
0--~ {[g(q~) +A]/~+((v,  s)} 

_ ( ~ + s )  
g((p)+A {[g((p)+A]/3+(rp ,  s)}+?/~ (q0, s) (21) 

Since the parameter s appears in this relation in a very simple form, we 
may perform the inversion in closed form to arrive at an equation for 
p+(cp, t) which reads 

8p + 8 
8~-- 8(p {[g(cp)+A]p+}+?(p - p + )  (22) 

with a similar equation with the + ' s  and - ' s  interchanged. These are just 
the equations derived by Horsthemke and Lefever. (13) 
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4. THE  J O S E P H S O N  J U N C T I O N  W I T H  NOISE 

Let us next consider the calculation of the effects of Markovian 
dichotomous noise on the dynamics of a Josephson junction. That is to 
say, we will solve the equation 

~o = g(~p) + n(t) (23) 

where n(t) is a two-state Markov telegraph signal which is allowed to take 
on the values A and - B ,  where A , B > 0 .  The rate for the transition 
A --* - B  will be denoted by 7 and the reverse rate will be denoted by 7'. 
We further fix the parameters to ensure that (n( t ) )  = 0, which implies the 
relation 

?'A = ?B (24) 

We expect, as a result of the noise, that phase locking or Shapiro steps 
cannot appear because of the loss of coherence. 

As in the last section, we define two probability densities p + (~o, t) and 
p (% t.) which correspond to the evolution of qfft) subject ot the values of 
the noise being A and - B ,  respectively, where again we need the restric- 
tions ( a - B )  2, ( a + A ) 2 >  1. The set of equations satisfied by these two 
functions is a slight generalization of that shown in Eq. (22), i.e., 

@+ 
{[g(~o)+ A ] p  + } + 7 ' P - - T P +  

0t ~?q~ 
(25) 

{ [ g(~o) - B] p _ } + 7P + - Y'P - 
0t ~?q~ 

It is useful to replace this set of equations by an equivalent set for the 
functions 

p = p +  +p and q=TP+ - 7 ' P  (26) 

These functions are found from Eq. (25) to satisfy the equations 

@ ~ { u,A } =  0J (27a) 
t?t t?q) g ( ~ ~  Oq~ 

The variable J in Eq. (27a) is seen to be a flux, which is related to the fact 
that the function p is a density. 
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Let the stationary solutions to Eq. (25) be denoted by p~~ and 
p(St)(q)), respectively, and those of Eq. (27) by p(St)(~0) and q(St)(q~). Then, 
because the right-hand side of the dynamical equation depends on ~o only 
as sin q~, we can express ( 0 )  as 

f 
rr 

((o)= {[g(q))+A]p~_t)((p)+[g(q))--B]p(St)(q))}d(p 
- - r e  

=f]~{g(fp)e(st)(fp)+Aq(st)((p)}dfp (28) 

The stationary state is characterized by the fact that the flux J is a 
constant. It therefore follows from Eq. (27a) that e (st) and q(St) are related 
by 

(st) Of- A (st) g(~o)p (~o)--q (q~)=J (29) 
7 

so that ( 0 )  can be written in the simple form 

( 0 ) = 2rcJ (30) 

Thus we see that a derivation of the form for ( 0 )  is equivalent to a 
calculation of the flux J. 

The stationary solutions are determined by setting the time derivatives 
in Eq. (27) to 0. In doing so, we eliminate the term q(St)((p) in terms of 
p(St)(~) from Eq. (29) and substitute the result into Eq. (27b) with 
Oq/&=O, thereby finding an equation containing only pt~t)(~o). This 
equation will be written in terms of two functions F(~o) and Q(q)), which 
are defined in terms of the function g(~0) and its derivative g'(cp) as 

a s  

'[2g + (A/7)( 7 - 7'!? + (7 + ~') g 
F(~~ = g g--~ +- ~ 7 -  -7~- j  Z ~ ~7-- ~ 

o ( ~ o )  = 
g ' + 7 + 7 '  

g[g + (A/7)(~ - 7')] - A2~'/7 

(31) 

de(St) .+_/~((p) p(St) = j t~((p) (32) 
&o 

This has a solution which can be written as 

p(St)((P) = Q ~ )  f_~ 
c Ji(~o) + c 

s Q(r d~ + (33) 
Q(q~) Q(~o) 
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in which Q(q)) is the function 

(34) 

I(q~) is the integral appearing in Eq. (33), and C is a constant of integra- 
tion. There are two constants to be determined in the general solution in 
Eq. (33), and therefore two conditions are required to fix these constants. 
These are normalization and periodicity, which is to say that C and J can 
be found by imposing the conditions 

p(st)(g) =p(St)(_ 7c ) and -~ p(m(~o) do = 1 (35) 

These constraints lead to an expression for J (=  (0) /2zr)  which is found 
to have the form 

J =  (36) 

the constant K being 

K =  I ( n ) / [ Q O z )  - 1] (37) 

These relations are simplified to a considerable extent in the special 
case in which 7 = Y' so that A = B. When this condition is satisfied one finds 

2g(cp) g'(q)) + 27g(q) ) g(~o) + 27 
F(q)) - g2((p)_ A2 , g2(qo) g2(q0)_ A2 (38) 

The function Q(q)) in Eq. (34) can then be expressed as 

in which 

g2(q~)- A2 
Q(cP) - a 2_  A 2 exp {27 ~J ~ g2(cp,)g(~~ A ~ drp'} 

g2((p)-  A2 
aZ_A2 exp[TA(q~)] (39) 

1 

Also, since g (~ )=  a, the value of Q(rt) is exp[TA(Tr)] and the function I((p) 
is 

1 
I ( q ) ) - a 2  A 2 [2?+g(~) lexp{TA(~)}d~  (41) 
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The combination of all of these relations allows us to express the flux J as 

)'i = exp[-?A(~}] } 1 
J =  [ Q ( ~ ) -  1] (O_= gZ(r F(~) d~ 

with the function F(~) defined by 

(42) 

f~ 
F(~) = (a 2 -  A 2) I (n)+ [ Q ( ~ ) -  1] {27 +g(p)} exp[?A(p)] dp (43) 

--re 

Our formalism allows us to recover some results of Chen and Dong (14) 
for vortex diffusion in high-T c superconductors which is based on the 
solution to Eq. (3) with fstoch(t ) =white noise. The white noise limit in the 
present notation is defined by the limits 

m 2 
A --* 0% 7 ~ c~, lim - - =  2 0  -2 (44) 

A,7~ co ~) 

where a 2 is a constant proportional to kT. The limiting behavior in this last 
equation allows the simplification of some of the formulas appearing in the 
last paragraphs. For example, the constant Q(Tz) becomes 

(45) 
( 4rcaT"~ ( 2rca'~ 

Q(rc) = exp A2 j =exp \ - ~ 5 - j  

Some further simplifications in the algebra allow us to then write for the 
flux 

x{f; exp[f~ g(p)dp]d~f; +2'~ dc~] -~ 4 r 
which is equivalent to Eq. (10) of Chen and Dong. (14) Numerical calcula- 
tions of the flux based on Eq. (42) for dichotomous noise suggest that it is 
always a monotonic function of the parameter a with a notable decrease as 
a -  A approaches the critical value of 1. This agrees qualitatively with the 
results of Chen and Dong for white noise. 

5. D I S C U S S I O N  

We have considered the dynamical behavior of an overdamped 
pendulum subject to an external driving field which was taken to have the 
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form of a series of rectangular pulses allowed to take on two values only. 
The switching times between the two values were of two kinds: periodic, as 
treated in Section 2, and random, as in Section 4. In both of these, the 
existence of regeneration points greatly simplifies the mathematical analysis 
while not doing violence to the physics of the system. As might have been 
anticipated, phase locking or Shapiro steps occur under the influence of a 
periodic driving field, and are destroyed, either partially or totally, when 
the driving field is random. The formalism developed in Section 3 permits 
an analysis of the transitions between these two cases. 

Indeed, the choice of an exponential form for O(t) reduces the problem 
of finding p(St)((p), originally formulated in terms of the integral equations 
in Eqs. (14) and (15), to that of solving a pair of first-order differential 
equations which have a relatively simple form. It is relatively simple to 
show that, for example, by setting O(t)= t exp( - t ) ,  the integral equa- 
tions are equivalent to a pair of second-order differential equations. The 
extension of these results to gamma distributions of integer order is 
straightforward, leading to systems of correspondingly higher-order dif- 
ferential equations. While these can generally be solved, the effort to do so 
increases considerably with the order of the gamma distributions. It would 
therefore be worthwhile to return to Eqs. (14) and (15) to solve them at 
least in terms of integral transforms. This is easy to do in principle but 
leads to some extremely complicated expressions which we have not so far 
been able to handle in any practical way. A physical question which 
motivates our wanting to make this further step is the following: We have 
shown in Section 2 that when O(t) is a delta function there is phase locking 
in the solution to Eq. (3), while when O(t) is an exponential function of 
time, phase locking is absent. Suppose that one considers a sequence of 
sojourn time densities ~ ( t )  with the property that for all values of 2 the 
average time 

( t ( 2 ) )  = tOa( t )  d t  = T (47) 

is fixed, and further that lim~. ~ ~ O~.(t) = 6 ( t  - T) .  We can then ask whether 
there is a value of 2 which induces the transition no phase locking ~ phase 
locking, or whether phase locking occurs only for 2 = oe. Such a family of 
densities is exemplified by 

(2+ 1)~+1 t ~ [ (2+ 1)t] (48) 
O~.(t)- T~+IF(2 + 1)exp T 

This question remains open for future investigation. 
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